

D16

Yi-Ting Wang (王臆婷)¹, Chia-Hsiang Lin (林嘉祥)², Chen-Fuh Lam (林真福)³, Tsan-Jung Yu (余燦榮)², Yu-Hua Lin (林佑樺)^{4*} ¹Department of Nursing, ²Division of Urology, ³Department of Anesthesia, E-Da Hospital. ⁴School of Nursing, Fooyin University

Objective

To examine the effect of providing compound thermal insulation measures on the normal body temperature and good thermal comfort during the operation of patients undergoing TURP. Furthermore, to explore the effects on pain and shivering during the recovery period from anesthesia.

Methods

Adopt an interventional experimental study design. Participants were recruited from a southern hospital. Patients underwent TURP were randomly assigned to the composite insulation (experimental) group (n=50) and

Table 1 Basic characteristics and homogeneity analysis of researchparticipants

	Conventional insulation group (n=50)	Composite insulation group (n=49)		
Variable	n(%) or $(M \pm SD)$	n(%) or $(M \pm SD)$	$\chi^{2/t}$	р
Age(year)	72.42 ± 7.52	74.04 ± 7.75	-1.06	.293 ^b
$BMI(kg/m^2)$			0.40	.939 ^a
< 18.5	3(6)	2(4.1)		
18.5~24.9	21(42)	19(38.8)		
25.0~29.9	2142)	22(44.9)		
> 30	5(10)	6(12.2)		
Hypertension	27(54)	26(53.1)	0.01	.925ª
Diabetes	13(26)	18(36.7)	1.33	.250ª
Heart disease	8(16)	13(26.5)	1.64	.200 ^a
Preoperative temperature (°C)	36.49 ± 0.46	36.42 ± 0.49	0.51	.497 ^b
ASA			0.91	.339 ^a
CLASS II	38(76)	33(67.3)		
CLASS III	12(24)	16(32.7)		
Anesthesia			2.96	.085 ^a
Sinal	34(68)	25(51)		
Gneral	16(32)	24(49)		
Surgical approach			0.487	.485 ^a
B-TURP	18(36)	21(42.9)		
ThuVARP	32(64)	28(57.1)		
Anesthesia time (min)	159.42 ± 52.38	151.61 ± 47.22	0.78	.438 ^b
Irrigation volume (c.c.)	$29314.00{\pm}15404.25$	27644.90±13202.10	0.58	.564 ^b

the conventional insulation (control) group (n=50) (**Table 1**). The measurement outcome included personal information and medical variables, ASHRAE thermal evaluation scale, pain evaluation scale, and the bedside shivering assessment scale for data collection. Participants data collected at when patients arrived at the operation registration area and before induction of anesthesia (pre-test, T0), and post-test performance at complete anesthesia (T1), 30 minutes (T2), 60 minutes (T3), 90 minutes after anesthesia minutes (T4), after transfer into the recovery room within 15 minutes (T5), before transferred out the recovery room (T6).

Results

Statistical analysis showed compared with the conventional heat preservation group, the compound heat preservation group can effectively maintain the intraoperative body temperature $\geq 36^{\circ}$ C (p <.05) (Figure 1). The thermal comfort was significantly higher than that of the conventional heat preservation group when patients entering the recovery room (p < .05). The degree of shivering was significantly lower than that of the conventional heat preservation group (p < .01), and the

Note : ^a Pearson Chi-Square ; ^b Independent Student *t* test ;

B-TURP = Bipolar Transurethral Resection of Prostate;

ThuVARP=Thulium laser Transurethral Vaporesection of the Prostate

Figure 1 Changes of intraoperative body temperature maintenance in the two groups before and after interventional measures

Table 2 Differences in the degree of thermal comfort and pain andshivering between the two groups during recovery from anesthesia

pain level was significantly higher than that of the conventional heat preservation group at leaving recovery room (p < .01) (**Table 2**).

Conclusion

Compound insulation measures have significant effects on the body temperature and thermal comfort of patients undergoing transurethral resection of the prostate, and can be used as a reference for clinical care to improve the quality of surgical care.

This study was supported by E-DA Hospital (EDAHT110028)

	Conventional insulation	Composite insulation			
_	(n=50)	(n=49)			
Variable	n(%) or <i>Mean</i> \pm <i>SD</i>	$n(\%)$ or <i>Mean</i> \pm <i>SD</i>	p		
(T5)			.016		
Comfort	41(82.00)	48(98.00)			
Discomfort	9(18.00)	1(2.00)			
(T6)			.678		
Comfort	48(96.00)	46(93.90)			
Discomfort	2(4.00)	3(6.10)			
Pain					
(T5)	0.44 ± 0.76	1.02 ± 1.65	.048		
(T6)	0.48 ± 0.71	1.02 ± 1.28	.003		
Shivering					
(T5)	0.26 ± 0.60	0.00 ± 0.00	.002		
(T6)	0.04 ± 0.20	0.00 ± 0.00	.159		
Note: Assessment tool: ASHRAE Thermal Sensation Evaluation Scale, Numerical Rating					
Scale, The Bedside Shivering Assessment Scale					